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1. INTRODUCTION

Since the seminal publications of Lipinski and co-workers,1

library design and lead optimization efforts in small molecule
drug discovery have included druglikeness considerations from
the hit stage to candidate selection.2�21 The objective of this
work was to systematically analyze druglikeness at the atomic and
molecular levels, including atom type preferences and intrinsic
structural diversity or Atom Type Diversity (ATD), of drugs,
leads, and nondrugs (commercially available small molecule
collections). Lipinski’s Rule of 5 (Ro5),1 Ghose�Viswanadhan�
Wendoloski (GVW) criteria,3,4 and other drug/nondrug com-
parisons7,8 were reassessed. Structural properties examined in
detail include ATD, calculated log P (based on ALOGP method,
ALOGP98),22 molar refractivity (AMR89),23 atom counts, and
molecular weight, along with several others. Intrinsic structural
diversity, also called atom type diversity (ATD), is shown to be a
key differentiator of drugs and leads relative to nondrugs. A new
and elaborate atom type representation, UALOGP (United
Atom Log P) derived from ALOGP method,22,23 is described
along with corresponding atomic physicochemical parameters
for a detailed characterization of the property ranges, constitu-
tional makeup, and structural diversity of drugs.

2. MATERIALS AND METHODS

(a). Methodology. The present work describes the develop-
ment of atomic and whole molecule parameters for characterizing
and comparing the molecular databases. At the whole molecule

level, ALOGP98 (calculated log P),22 AMR89 (calculated molar
refractivity), 23NATS (number of atoms),MW(MolecularWeight),
and a new parameter, ATD (atom type diversity), were calcu-
lated, along with a number of other descriptors8 for chemical
space characterization. At the atomic level, considering classifica-
tion systems for physicochemical property estimation, 22�24

we created a united atom representation, United Atom Log P
(UALOGP see Table 1) with 148 atom types, by extending the
ALOGP representation22,23 (113 types including hydrogens),
thus enabling more elaborate definitions to reflect subtle differ-
ences among similar atom types, while de-emphasizing less im-
portant hydrogen types for characterizing druglikeness.
For all databases, several parameters were calculated from the

property distributions: the mean, the standard deviation, the ranges
of each property covering 95%, 80%, and 50% of the molecules in
a database. At the atomic level, the following parameters were
calculated based on the calculated atom type distribution in each
database: the total frequency, the number of different com-
pounds containing the type, % occurrence, mean occurrence
per molecule, and its corresponding standard deviation.
A relative druglikeness parameter (RDPi) was defined for each

atom type, i, based on atom type distributions of drug and
nondrug databases:

RDPi ¼ pi, d=pi, n ð1Þ
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Table 1. Physico-Chemical Parameters (Group Contribu-
tions for log P and Molar Refractivity (MR) for the UALOGP
Atom Types)a,b

UALOGP group contribution

UALOGP atom

type description log P MR

Type 1:CH3R,CH4

1a C0sp3 having no X

attached to next C

0.6420 5.5021

1b R � C 0.0099 5.4244

1c C0sp3, having 1 X

attached to next C

0.4377 5.7325

1d C0sp3, having 2 X

attached to next C

0.0513 5.8987

1e C0sp3, having 3 X

attached to next C

0.3411 5.2783

Type: 2 CH2R2

2a C0sp3 having no X

attached to next C

0.4562 4.6010

2b R � C 0.0348 4.5492

2c C0sp3, having 1 X

attached to next C

0.3200 4.7546

2d C0sp3, having 2 X

attached to next C

0.0624 4.8654

2e C0sp3, having 3 X

attached to next C

0.2556 4.4518

2f C0sp3, having 4 X

attached to next C

�0.2880

Type 3: CHR3

3a C0sp3 having no X

attached to next C

0.0660 3.6475

3b R � C �0.1447 3.6216

3c C0sp3, having 1 X

attached to next C

�0.0021 3.7243

3d C0sp3, having 2 X

attached to next C

�0.1309 3.7797

3e C0sp3, having 3 X

attached to next C

�0.0343 3.5729

3f C0sp3, having 4 X

attached to next C

�0.3061

Type 5: CH3X

5 C1sp3, C0sp2 0.1023 5.6967

Type 6: CH2RX

6a C1sp3, C0sp2 0.0116 4.7122

6b R � C �0.2018 4.5620

Type 7: CH2X2

7 Any of C2sp3,

C1sp2, C0sp

0.0055 4.2339

Type 8: CHR2X

8a C1sp3, C0sp2 �0.0504 3.3979

8b R � C �0.1571 3.3228

8c C0sp3, having 1 X

attached to next C

�0.0139 3.4255

Table 1. Continued

UALOGP group contribution

UALOGP atom

type description log P MR

8d C0sp3, having 2 X

attached to next C

�0.1433 3.4809

8e C0sp3, having 3 X

attached to next C

�0.0467 3.2741

8f C0sp3, having 4 X

attached to next C

�0.3185

Type 9: CHRX2

9a C2sp3, C1sp2, C0sp 0.1322 3.1775

9b attached H’s

when C is R � C

0.1576 3.1958

Type 10: CHX3

10 C3sp3, C2�3sp2, C1�3sp 0.7184 3.3879

Type 15: dCH2

15a C1sp3, C0sp2 0.4736 4.9879

15b C3sp3, C2�3sp2, C1�3sp �0.8237 4.8641

Type 16: dCHR

16a C1sp3, C0sp2 0.2339 5.1593

16b attached H’s when

C is an R � C

0.1272 5.0842

16c C0sp3, having 1 X

attached to next C

0.2698 5.1869

16d C0sp3, having 2 X

attached to next C

0.1410 5.2423

16e C0sp3, having 3 X

attached to next C

0.2376 5.0355

Type 18: dCHX

18a C2sp3, C1sp2, C0sp �0.2871 4.4010

18b C3sp3, C2�3sp2, C1�3sp �0.8422 4.4325

Type 21: tCH

21a C2sp3, C1sp2, C0sp 0.9877 4.2830

21b C3sp3, C2�3sp2, C1�3sp 0.4326 4.3145

Type 24: R- -CH- -R

24a C1sp3, C0sp2 0.3050 4.3433

24b attached H’s

when C is R � C

0.1983 4.2682

Type 27: R- -CH- -X

27a C2sp3, C1sp2, C0sp 0.5785 3.3014

27b C3sp3, C2�3sp2, C1�3sp �0.0366 3.3329

27c attached H’s

when C is R � C

0.5239 3.3197

Type 30: X- -CH- -X

30 C3sp3, C2�3sp2, C1�3sp 0.1443 3.3329

Type 33: X- -CH- -X

33a C2sp3, C1sp2, C0sp 1.0322 4.2676

33b attached H’s when

C is R � C

0.1511 4.2859

Type 36: Al-CHdX

36a C2sp3, C1sp2, C0sp 0.3860 4.8195
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where i refers to the atom type, pi,d is the % occurrence of type i in
the drug database and pi,n is the % occurrence of type i for the
nondrug database (an approximation for expectation value, based
on a typical distribution in commercial small molecule collections).

Values of RDPi > 1 indicate preferred types in drugs, while values
<1 indicate the opposite.
(b). Molecular Databases. For the present analysis, three

sources of drug molecules were considered: (i) a database of
FDA approved drugs, available as part of ZINC databases;25 (ii) the
DrugBank,26 a database of nearly 4800 entries including over
1,350 FDA-approved small molecule drugs, 123 FDA-approved
biotech (protein/peptide) drugs, and 71 nutraceuticals and over
3,243 experimental drugs; and (iii) JBLDrugDB,42 a small, well-
annotated proprietary database of FDA approved drugs. These
databases were filtered to exclude highly lipophilic (calculated
log P > 8.0) and highly hydrophilic compounds (calculated log P
< �5.0), similar to earlier analyses.3,4 We also excluded com-
pounds such as nutraceuticals and protein/peptide drugs from
our analysis, as well unusually small (<100 MW or <14 atoms
or <10 heavy atoms) or large (>800 MW or >100 atoms)
molecules. Also removed were polymers, peptides, quaternary
ammonium, multiple acids, and phosphates. This additional
filtering excluded entries not of particular interest as small
molecule drugs.
Two sets of 470 lead-drug pairs generated by Hann and co-

workers28 were also analyzed to delineate differences between
lead molecules and the corresponding drugs. The lead database
was not subjected to filtering. The present work also required an
analysis of a “nondrug” database for an atomic level druglikeness
assessment. Of several commercially available compound data-
bases, we chose the Chembridge27 database, which is quite large
(the latest version contains over 700,000 compounds, which
includes both target class and general libraries) and extensively
used for screening in the pharmaceutical industry. Two inde-
pendent random sets of 10000 molecules each were picked
from an earlier version of the data set and subjected the data
set to the filtering procedure mentioned in the methodology.
This was necessary to reduce the size of nondrug data set for
practical purposes. This marginally reduced the number of
compounds to 9969 and 9965 for the two sets. One of the two
sets was used as the nondrug data set. We also analyzed the
drug and nondrug databases employed by Hutter7 for com-
parison.
(c). Atom Types and Atomic Properties. The new united

atom type representation (UALOGP) introduced here was derived
from the ALOGP representation,22,23 with greater elaboration
and distinctions of heavy atom types, grouped with bonded hydro-
gen atoms. This led to a total of 148 heavy atom types, based on
the number and types of added hydrogens for each heavy atom.
For example, a methyl carbon (ALOGP type 1) belongs to one of
five united atom types (1a�1e), which were created based on five
different types of attached hydrogens. Shown in Table 1 are
UALOGP group contributions derived from atomic constants
for lipophilicity (log P) and molar refractivity (MR) developed
by Ghose et al22 and Viswanadhan et al.23

(d). Atom Type Diversity. Characterization of intrinsic struc-
tural diversity was based on the concept that atom classification is
hierarchical, with elemental types at the primary level. ALOGP22

and UALOGP classifications constituted secondary and tertiary
levels of finer differentiation. Hydrogen atoms were considered
implicit, and only heavy atoms were used for assessment. On the
basis of these, three structural diversity measures were defined for
a molecule with NHATS heavy atoms.

P1 ¼ Number of element types=NHATS ð2Þ

Table 1. Continued

UALOGP group contribution

UALOGP atom

type description log P MR

36b C3sp3, C2�3sp2, C1�3sp 0.1691 4.8510

36c R � C 0.3914 4.8378

Type 37: Ar-CHd

37a C3sp3, C2�3sp2, C1�3sp �0.0615 5.6090

37b R � C 0.4990 5.5958

Type 42: X- -CH 3 3 3X

42 C3sp3, C2�3sp2, C1�3sp �0.2518 3.6104

Types 56, 57: �OH

56 aliphatic �OH �0.4603 2.2646

57 phenol, enol, carboxyl OH �0.1163 2.2778

Type 64: Se-any-Se

64 -SeH 0.5565 11.9366

Type 66: Al-NH2

66 -NH2 �0.7499 4.2221

Type 67: Al2NH

67 -NH �0.4204 3.3000

Type 69: Ar-NH2, X-NH2

69 -NH2 �0.5955 5.2841

Type 70: Ar-NH-Al

70 H attached to heteroatom �0.1425

Type 72: RCO-N, N-XdX

72 H attached to heteroatom �0.6149 3.3000

Type 73: Ar2NH, Ar3N

73 H attached to heteroatom 0.0223 3.5956

Type 74: RtN, RdN-

74 H attached to heteroatom 0.0313 3.5000

Type 79: Nþ

79 H attached to heteroatom �1.5475

Type 106: R-SH

106 H attached to heteroatom 0.5110 8.6916

Type 118: PX3 (phosphite)

118 phosphite �0.9002

Type 119: PX3 (phosphine)

119 H attached to heteroatom 0.5669
aThe original ALOGP atom types22 are identified, for each correspond-
ing subset of UALOGP types. bR represents any group linked through
carbon; X represents any heteroatom (O, N, S, P, Se, and halogens); Al
and Ar represent aliphatic and aromatic groups, respectively; “d”
represents a double bond; “t” represents a triple bond; “- -” represents
a aromatic bonds as in benzene or delocalized bonds such as the N�O
bond in a nitro group; “ 3 3 ” represents aromatic single bonds as the
C�Nbond in pyrrole. TheC- -Nbondorder in pyridinemay be considered
as 2 while we have one such bond and 1.5 when we have two such bonds.
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P2 ¼ Number of heavy atom types=NHATS ð3Þ

P3 ¼ Number of united atom types=NHATS ð4Þ
Here, the P’s define the atom type diversity based on elemental

types (eq 2, P1), ALOGP
22 heavy atom types (eq 3, P2), and

united atom (UALOGP) types (eq 4, P3). Atom type diversity
(ATD) was defined as the product of P1, P2, and P3, times 100 (a
scale factor).

ATD ¼ P1 3 P2 3 P3 � 102 ð5Þ
This definition ensured equal weight to each level of atom

classification.

3. RESULTS AND DISCUSSION

The distributions of physicochemical properties in drug data-
bases had been the subject of several studies.3�5,28�31 Recent
studies identified distinct physicochemical profiles of different
drug classes, such as respiratory drugs, marketed versus devel-
opment drugs.29�31 Previous attempts at quantifying druglike-
ness using linear andnonlinear approaches4�15,17,18,20,21 employed a
multitude of molecular characteristics. These included, for example,
atom pair frequencies,7 whole molecule properties,8 ALOGP atom
types,9 and ISIS keys13,32 with the goal of computing druglike-
ness metric for a given molecule. These may be regarded as sim-
plified representations of a multidimensional druglikeness con-
cept encompassing a broad range of properties to differentiate
drugs from nondrugs (e.g., refs 7�13,20). While linear approaches
(e.g., refs 1�3,20) have the advantage of transparency, nonlinear

approaches (e.g., refs 9,10) are likely to be more effective, as they
can model descriptor interdependencies.

To identify distinct attributes of drugs at atomic andmolecular
levels, a comprehensive assessment of structural diversity and prop-
erty distributions of drugs, leads, and nondrugs was performed,
re-examining physicochemical property ranges and distributions
for druglikeness proposed earlier.2�5

UALOGPAtomClassificationand ItsValidation.The ALOGP
atom classification was originally proposed byGhose and Crippen33

to quantify molecular lipophilicity (as assessed by 1-octanol to
water partition coefficient - log P) and hydrophobic interactions
in QSAR studies. Extensive revisions22,23 of atomic parameters
were shown to successfully predict log P and molar refractivity of
organic molecules and were used for molecular fingerprinting and
QSARstudies (e.g., refs 35�39).ALOGPatomtypeswere employed
for characterizing druglikeness,9 and deriving GVW criteria.3,4

In the context of the current, more elaborate UALOGP system, it
is pertinent to consider Leo’s critique of the ALOGP types34 and
statistically derived atomic lipophilicity values. Leo34 noted that
the fitting procedure yields negative atomic lipophilicity values
for carbons and relatively large, positive values for attached
hydrogens, which Leo considered contrary to intuitive expecta-
tions. This, however, would not be true for the current UALOGP
representation. He noted that atomic lipophilicity values in the
ALOGP9822 version differ significantly from the older version,23

for carbons and hydrogens. For example, rms deviation for
ALOGP lipophilicity parameters from the two publications of
198923 and 199822 was computed to be 0.42 (for the atom types
in Table 1). However, when these two sets of ALOGP para-
meters were used to derive and compare UALOGP parameters,
the corresponding rms deviation dropped to 0.05 because of

Table 2. Average Physico-Chemical Properties:a Molecular Weight (MW), Calculated log P (ALOGP98), Calculated Molar
Refractivity (AMR89), Atom Type Diversity (ATD), and Number of Atoms (NATS) Identified from Several Drug Databases, a
Lead Database, and a Nondrug Database

database number of compounds MW ALOGP98 AMR89 ATD NATS

1. Drugs from Leads 404 314.4(87.3) 2.6(1.6) 86.4(22.9) 5.06(3.32) 42.9(11.8)

1a charged subset 214 322.1(77.0) 3.0(1.5) 92.4(20.3) 4.32(2.33) 47.2(10.0)

1b neutral subset 190 305.8(97.1) 2.2(1.6) 80.0(24.0) 5.88(4.00) 38.0(12.2)

2. Leads 206 272.0(90.6) 2.0(1.8) 75.2 (24.4) 6.49(5.11) 37.5(12.1)

2a charged subset 100 274.7(86.1) 2.6(1.7) 80.7(24.2) 5.59(4.67) 41.5(12.0)

2b neutral subset 106 269.3(95.0) 1.5(1.7) 70.0(23.5) 7.34(5.38) 33.8(11.1)

3. JBLDrugDB 777 331.1(105.6) 2.4(1.9) 88.6(25.7) 5.33(4.06) 44.1(14.2)

3a charged subset 318 320.9(89.9) 2.5(1.8) 90.1(23.4) 5.13(3.18) 46.0(11.8)

3b neutral subset 459 338.1(114.7) 2.3(1.9) 87.7(27.1) 5.46(4.57) 42.8(15.5)

4. Drug Bank 2380 315.4 (107.5) 2.0(2.2) 83.9(29.5) 5.98(4.73) 41.1(14.9)

4a charged subset 899 318.0(103.6) 2.0(2.2) 87.9(29.3) 5.94(4.68) 44.4(14.0)

4b neutral subset 1481 313.8(109.7) 1.9(2.2) 81.4(29.3) 6.01(4.76) 39.2(15.1)

5. FDA approved drugs from ZINC 943 322.4(101.9) 2.3(1.9) 86.8(25.8) 5.35(4.05) 43.0(13.8)

5a charged subset 407 326.9(91.8) 2.6(2.0) 82.8(26.6) 4.86(3.19) 46.5(11.8)

5b neutral subset 536 319.0(109.0) 2.1(1.9) 81.4(26.6) 5.73(4.57) 40.2(14.6)

6. Non_Drugs 9969 403.2(59.6) 3.1(1.2) 113.7(17.1) 3.59(1.90) 56.6(9.0)

6a charged subset 5012 400.3(58.7) 3.2(1.2) 114.6(16.7) 3.50(1.82) 58.8(8.65)

6b neutral subset 4957 406.3(60.5) 3.0(1.2) 112.7(17.4) 3.68(1.98) 54.4(8.9)

7. Drugs_All 2880 318.7(107.8) 2.0(2.1) 84.6(28.8) 5.78(4.53) 41.8(14.9)

7a charged subset 1058 319.0(99.8) 2.1(2.1) 88.3(28.0) 5.77(4.45) 44.8(13.4)

7b neutral subset 1822 318.5(112.2) 1.9(2.1) 82.4(29.1) 5.78(4.57) 40.0(15.3)
a Standard deviation in parentheses.
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smaller differences between the sets, though with a greater number
of parameters. This confirms that the UALOGP parameters shown
in Table 1 are close to convergence and addresses Leo’s point.
Whole Molecule Properties. Table 2 shows the physico-

chemical property ranges for different sets of drugs, leads, and
nondrugs, described earlier. We evaluated the ranges separately
for charged and neutral molecules, an aspect known to be sig-
nificant,2,40 but not considered explicitly in previous assessments.1,3,7

Contribution to drug absorption from charged form is significant,
and it is often preferable to replace or remove charged groups in a
lead molecule to improve PK properties such as hERG activity or
to improve brain penetration.40 The log P value is, by definition,
associated with the neutral form of a molecule, though the charged
form could be relevant under physiological conditions. For log P
(ALOGP98)22 calculations we used the neutral form. For
example, �COOH oxygens were assigned the types 58 (dO)
and 61 (�OH). For all other calculations, the representation
(and hydrogen addition or deletion for charged groups) reflects
the net charge as calculated by the EPIK41 module of the Schro-
dinger software. Thus, type 62was assigned for oxygens of�COO�

and type 79 for nitrogen of �NH3þ. Table 2 shows the average
calculated values of logP (ALOGP98),molar refractivity (AMR89),
molecular weight (MW), number of atoms (NATS), and atom type
diversity (ATD) for different databases and their subsets.
For nondrugs the average values of ALOGP98, AMR89, molec-

ular weight, and number of atoms are higher than for drugs. The
average difference in calculated log P (ALOGP98) between
drugs (Drugs_All) and nondrugs is 1.1 units (Table 2). Atom
type diversity (ATD) is, on the average, higher for drugs (5.78 for
Drugs_All vs 3.59 nondrugs). Table 2 also shows the property

differences betweendrugs and leads from thedrug-leadpair database.
On the average, drugs are heavier (ΔMW ∼ 42, ΔNATS ∼ 5),
bulkier (ΔAMR89∼ 11), andmore lipophilic (ΔALOGP98∼ 0.6)
relative to leads. These data shown here are largely consistent
with the conclusions of Hann et al,28 but have some differences with
those of Oprea et al.43 and Rishton.44 Interestingly, leads have
greater atom type diversity (ATD ∼ 6.5 for leads vs 5.78 for
drugs). The database of leads considered here is relatively small.
Nevertheless, this analysis suggests that, on the average, lead
optimization process adds greater bulk but lowers atom type
diversity.
Comparing the data for charged and uncharged drugs shows

interesting differences. For FDA approved drugs, MW, ALOGP98,
AMR89, and NATS differ by 8 Da, 0.5 log units, 1.4 units, and 6.3
atoms, respectively, for charged and uncharged molecules. As
charged lead molecules are hydrophilic, they offer greater free-
dom to the medicinal chemist to add hydrophobic functionalities
to improve potency, whilemaintaining a low logD. Not surprisingly,
the corresponding property differences for charged versus neu-
trals in the case of a nondrug database are insignificant. For drugs
from drug-lead pairs, the differences inMW, ALOGP98, AMR89,
and NATS between charged and neutral molecules are 16 Da, 0.8
log units, 12 units, and 9, respectively, whereas for leads it is 5 Da,
1.1 log units, 11 units, and 8, respectively. Thus, the observed dif-
ferences between charged and uncharged subsets appear con-
sistent across all drug databases considered.
Figure 1 graphically shows the property ranges of ALOGP98,

AMR89, MW, and NATS for different databases. The numerical
values of these ranges are given in Supporting Information, Table S1.
The ranges (at 80% and 50% coverage) for AMR, MW, and

Figure 1. (a) ALOGP98, (b) AMR89, (c) MW, and (d) NATS ranges covering different fractions of each database. The middle bright colored part
covers 50% of each database. Dark colored extensions on either side constitute another 30%, covering 80% range, and another 15% is added by further
light colored extensions, covering 95% range. Databases shown are (A) Drugs_All, (B) Drugs from leads, (C) leads, (D) JBLDrugDB, (E) DrugBank,
(F) FDA approved drugs, and (G) nondrugs.
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NATS (Figure 1) agree reasonably well with the previously
reported ranges.3We see the 80% range for ALOGP98 is�0.8 to
4.7 (consistent with Ro51), lower than the previously reported

range3 of �0.4 to 5.6. The 50% range for ALOGP98 shows a
larger difference, with preferred range left-shifted by 0.5. The
present analysis also shows that the ranges based on 95% coverage

Figure 2. Histogram distributions of (a) ALOGP98, (b) AMR89, (c) MW, and (d) NATS for the six databases: A, (magenta) Drugs_All; B, (green)
Drugs from Leads; C, (light brown) leads; D, (purple) JBLDrugDB; E, (dark brown) DrugBank; F, (light blue) FDA approved drugs, and G, (dark blue)
nondrugs.

Figure 3. Distribution of ATD scores for (a) drugs (Drugs_All) and nondrugs (b) drug and lead pairs used in this study.



333 dx.doi.org/10.1021/co2000168 |ACS Comb. Sci. 2011, 13, 327–336

ACS Combinatorial Science RESEARCH ARTICLE

are appropriate for a properly filtered database, so as not to
exclude most of the known small molecule drugs. Use of 95%
coverage of known drugs extends previously reported ranges.3,4

Thus, the 95% ALOGP98 range is �2.2 to 6.1 (for Drugs_All
and other drug databases), consistent with the elliptical filter
proposed by Egan et al,40 while the Ro51 has an upper limit of 5.0
for log P, which excludes a good number of orally absorbed
known drugs. The absence of lower limit for log P in Ro5 may
cause the inclusion of highly hydrophilic material as druglike. For
nondrug databases, the calculated ranges necessarily depend on
their sources. Thus, Hutter’s7 nondrug database has a different
property distribution (Supporting Information, Figure S1).
Histogram plots of the distribution for these physicochemical

properties are shown in Figure 2. Though the ALOGP98 dis-
tribution of nondrug database is different from other drug or lead
databases, the range for the drug database subsumes the narrower
nondrug range. On the whole, the drug database ranges are larger
and strongly overlap the nondrug ranges. The peak of the
ALOGP98 distribution in Drugs_All database is in the range of
1 to 2.5, though the range of 2.5 to 4 units is almost equally
occupied. This contrasts with the peaks in the nondrug database
where 44.4% of molecules occupy the 2.5 to 4.0 range. Leads
peak around 1 to 2.5 as in Drugs_All, whereas drugs from lead-
drug pairs peak in the 2.5 to 4 range (35% of the database),
reflecting the addition of lipophilicity during lead optimization.
We see a right-shift in the distribution for nondrugs with a greater
peak in the log P range of 2.5 to 4.0. However, the nondrugs
considered here are bulkier (the peak of the AMR89 histogram is
in the range of 100 to 125, occupying over 50% of the database).
MW for the drug databases peak at 270�360 and for the lead

database, peaks at 180�270 range. In Figure 2 (c), it is seen that
the nondrug database has larger molecules, with a peak at the
range of 360�450, covered by over half of the database. The
histogram plot of NATS (Figure 2d) shows a peak in the range of
28�42 (∼33% of molecules) for the drug databases, whereas the
current nondrug database peaks in the 56�70 range. An exam-
ination of druglikeness of our drug and nondrug databases by the
method of Xu and Stevenson8 indicated that, for the drug data-
base, the druglikeness index (DLI) peaks in the range of 75�85,
while most nondrugs have DLI values below 75 (Supporting
Information, Figure S2), though the DLI index ranges for the
drug and the current nondrug databases overlap strongly. Xu and
Stevenson8 also reported a chemical space diversity analysis of

drugs using 22 descriptors. A principal component analysis
(PCA) of the same set of descriptors for our databases enabled
an analysis of chemical space diversity for both drug and non-
drug molecules. Plots of the first 2 PCs (Supporting Information,
Tables S2 and S3, Figure S3) shows greater dispersion of
nondrugs compared to drugs, though drugs occupy a part of the
same chemical space occupied by nondrugs. This shows the need
for a better druglikeness index to discriminate effectively drugs
and nondrugs, when an appropriately filtered nondrug database
is used.
In a pioneering study, Oprea43 identified the differences in

physicochemical characteristics of leads and drugs, which would
be useful to identify compounds for lead generation and opti-
mization efforts. Hann and others28 identified 470 lead drug-
pairs. This formed a useful database for the present analysis of the
characteristics of leads for comparison with drugs, with the goal
of providing a link between lead-like and drug-like chemical space.
As part of the current study, we identify differences between leads
and drugs, both at the whole molecule and at the atomic levels.
Figure 3 (a) shows the distribution of ATD scores calculated

using eq 4 for the drug (Drugs_All) and nondrug databases. The
profiles appear distinct for the two classes of molecules, though
both distributions peak in the range of 3.0 to 5.0 of the ATD
score. On the whole, drugs have higher ATD scores, and 45% of
drugs have scores below 5.0. For nondrugs, this percentage is
much higher (70%). Scores greater than 7.0 are much rarer for
nondrugs (9% for nondrugs vs 36% for drugs). Thus, drugs are
significantly richer in atom type diversity. Comparing drugs and
corresponding leads (Figure 3b), it is seen that 45% of drugs and
41% of leads have ATD scores below 5.0. Greater than 70% of
drug molecules have scores below 7.0 while coverage of leads for
the same range is only 57%. This shows leads are constitutionally
more diverse compared to drugs.
Some examples of drug-lead pairs are in Table 3. Atom type

diversity and other properties of these molecules are given in
Supporting Information, Table S4. As leads progress, final drug
candidates have more atoms improving potency and optimizing
other properties. This usually increases lipophilicity as noted
earlier, entailing the addition of groups which decrease atom type
diversity. For example, adding a phenyl increases atom count by
6, while lowering atom type diversity.
Analysis Drug Properties at the Atomic Level. For the

Drugs_All database, we analyzed atom type distributions and
several parameters (Supporting Information, Table S5) using
both the united atom and the all atom representations. The pa-
rameters evaluated for each atom type are the frequency, percent
occurrence, RDPi (relative druglikeness, eq 1 of the Methods
section), mean occurrence (number of atom types per molecule)
with standard deviation. We examined the results using three
other different random collections of 10,000 compounds each
from the Chembridge database, to represent the nondrug
database. The results are largely similar for different nondrug
sets employed.
Atom type druglikeness (RDPi) analysis provides insight on

those types which are preferred in a drug molecule over a
nondrug. Among heavy atoms, atom type 56 (hydroxyl oxygen)
has the highest RDPi value of 7 reflecting its important role as a
donor or acceptor in drug molecules. United atom type 3a (C0

sp3

carbon having no heteroatom attached to its next C) occurs often
among carbon atoms in drugs, with an RDPi value 6. This saturated
carbon type plays the role of bridgehead for many types of rings
such as cyclohexane, piperidine, pyrrolidine, which are common

Table 3. Examples of Drug-Lead Pairsa

aATD scores in parentheses.
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among drugs. We note that carbon atoms of type 17, 16, 41 have
high RDPi values of 5, 4, and 4, respectively. This underscores the
importance of nonaromatic, unsaturated carbon types in drugs.
Carbon atom type 4 (CR4 type) is rare and modestly preferred in
drugs (RDPi = 2.5). Other less preferred carbon atom types are
27, 28, 33, and 34 with a low RDPi value of 0.3. These represent
aromatic carbon types (with or without an attached R-group)
next to a heteroatom in the aromatic ring. Interestingly, in drugs
45 atom types are rare with near zero RDPi value. Among het-
eroatoms, types 68 and 71 have a low RDPi value (0.3). These
represent trisubstituted nitrogen types with two or three attached
aliphatic groups. In drugs, hydrogen attached to heteroatom
(ALOGP type 50) is modestly preferred (RDPi = 2.5).
Figure 4 shows atom types with relatively high RDPi values

and those occurring most often among known drugs, in the
atomic property space, defined by ALOGP9822 and AMR8923

atomic values. Figure 4 shows colored circles for each atom type,
proportional in size to (a) RDPi or (b) occurrence frequency in
the drug database. United atom types 3a (among carbon types),
56 (among oxygen types), and 73a and 79 (among nitrogen
types) stand out with respect to RDPi.
The UALOGP classification described here uses 148 types,

ensuring adequate consideration of structural diversity in drugs.
An earlier analysis by Hutter7 of drug and nondrug databases
used 47 atom types as implemented in the MMþ force field. A
comparison of Hutter’s results with the present study shows that
the choice of the nondrug data set can have a strong influence on
derived preferences of atom types in drugs. For example, the
MMþ type C4 (ALOGP types 1�14), shows a strong pre-
ference for drugs, based on Hutter’s7 analysis and databases. We
find that these atom types are common in both drugs and
nondrugs. Notably,∼30% of Hutter’s nondrug set does not pass
our first filters, partly explaining the difference in results.
Kutchukian et al20 analyzed preferences of certain fragments to
occur in drug database, using Hutter’s data set,7 which indicated
that amides occur in drugs more often and esters in nondrugs. In
contrast, our analysis shows that amides are more abundant in
nondrugs and esters form a smaller percentage (∼10%) of both
drugs and nondrugs. These differences with earlier literature

demonstrate the significance of using an elaborate atom classi-
fication as well as relevant nondrug data sets.

4. CONCLUSION

The present analysis of drug, lead, and nondrug databases
reveals preferences of drugs with regard to atom types and their
properties. A comparative assessment of various druglikeness criteria
is described here, in terms of important physicochemical proper-
ties, based on a detailed characterization, that included multiple
drug databases and commercially available screening databases to
represent nondrugs realistically. The usefulness of a new united
atom type representation, UALOGP, along with associated atomic
physicochemical parameters, is demonstrated for the assessment
of druglikeness. The consensus property ranges derived here,
from the current comprehensive drug databases, differ from
GVW80, Ro5, and other criteria, and ensure greater coverage
(95%) of known drugs, including those from the past decade.
Ranges for charged and uncharged drugs were shown to be distinct.
Drugs were shown to be structurally more diverse than nondrugs,
but less diverse than leads. These new findings were rationalized.

In summary, property preferences at atomic and molecular
levels for drugs, leads, and nondrugs are evaluated and presented,
to be considered for library design and lead optimization in drug
discovery.
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